

U.S. Department of Energy2004 Glass Project Review

June 22, 2004 Crystal City, Virginia

Steve Mighton
(740) 321-7633
steve.mighton@owenscorning.com

Presentation Outline

Consortium Membership

Background

- Modeling
- Advantages of oxy flame
- Cost Saving examples

Project Task List

- •Bench trials OC Science & Technology Center, Granville, Ohio
- Ongoing in-plant top fire trial in OC's Guelph
- Side fire trial in Guelph
- •Safety interlocks Jackson no gas, no oxygen

Consortium activity supporting project

Consortium Partners:

Owens Corning

Osram-Sylvania

BOC

CTI/Eclipse

Objectives:

Develop an oxy-fuel combustion system specifically for front-end systems that delivers:

- Improved energy efficiency
- Reduced operating cost
- Improved environmental performance
- More uniform glass thermal quality.

Major Tasks:

- (1) Develop burner systems for system integration
- (2) Develop, test a firing system with minimum capital costs
- (3) Field test the firing system(s) to obtain operational data;
- (4) demonstrate the technology on a production system
- (5) work with consortium to benefit other sectors of the glass industry

Background

Energy Usage Distribution in Our Process

Oxyfuel Furnace = 47% Front-end System 53%

- Current Technology: Low Energy Efficiency = ~25%
 Massive Piping & Control Systems
- Prior attempts by the fiberglass industry to use gas/oxy combustion in a Front End have not led significant proliferation due to high cost, long payback or other reasons
- Premixed System Always a Safety Concern

Thermal Radiation definitions

- **Absorptivity,** α , the fraction of incident energy absorbed by a surface.
- **Reflectivity**, ρ , the fraction of incident energy reflected at a surface.
- **Transmisivity,** τ, the fraction of incident energy <u>transmitted</u> through a surface.
- **Emissivity**, ε , is defined as the fraction of energy emitted by a real surface ratioed to that of an ideal surface.

Glass below surface

1) Higher flame temperature – more energy radiated due to Δ T

Flame energy radiated (Q) is proportional to the 4th power of the difference in temperature between the flame and glass.

$$\dot{Q} = \mathcal{E} \cdot \boldsymbol{\sigma} \cdot A \left(T_{\text{flame}}^{4} - T_{\text{glass}}^{4} \right)$$

σ = constant

A = surface area

ε = thermal emissivity, fraction of energy emitted by flame

 T_{abs} = absolute temperature emitting surface

1) Higher flame temperature – more energy radiated due to Δ T

$$\dot{Q} = \varepsilon \cdot \sigma \cdot A \left(T_{\text{flame}}^4 - T_{\text{glass}}^4 \right)$$

$$T_{\text{oxy flame}} = \sim 2973 \text{ K } (4900 \text{ F or } 2700 \text{ C})$$

$$T_{gas\ flame} = \sim 2255\ K\ (3600\ F\ or\ 2000\ C)$$

$$T_{glass} = \sim 1643 \text{ K } (2500 \text{ F or } 1370 \text{ C})$$

Ratio of
$$(T^4 - T^4)$$
 term using: a) $T_{\text{oxy flame}}$

2) Higher flame temperature – more energy transmitted through the glass

Hotter flame has shorter wavelength

- 2) Higher flame temperature more energy transmitted through the glass
 - shorter wavelength radiation enters glass more readily Spectral Radiation Emission Power

Radiation from combustion can penetrate glass melt.

- 3) Oxy/gas flame does not have to heat up N2 in air
 - Air is 78% nitrogen, 21% oxygen
 - eliminating nitrogen component reduces amount of gas that has to be heated

Gas savings with oxy firing:

Melter: ~40% savings

Front End: ~65-70% energy savings (before oxygen cost)

Why the difference?

Gas savings with oxy firing:

Melter: ~40% savings

Front End: ~65-70% savings

Why the difference?

Melter combustion air is preheated in a recuperator Front End - no recuperator

Technical Approach – The Technology

Oxyfuel Technology Vs.
Conventional System

Technical Approach – Temperatures

Emissions Reduction

Carbon Dioxide Reduction: 65 -70%

Nitrogen Oxides Reduction: 90%

Air/gas

Bench Trials – top fire configuration

SECTION ON C OF FOREHEARTH

Equal Velocity Burner Trial

Economics for mid size melter

Total Percent Savings w/oxy-gas firing

OWENS CORNING

Economics for Jackson front end

- Gas \$6.75/DT
- Energy Input before conversion 16 DT/hr
- Operating Savings \$440,000 470,000/yr
- Payback (excluding one time R&D development) = 1.85 yrs

Goals – Jackson Installation

- Assessment of equipment improvements for reliability
 - Burner block, check valve, burner packing, manifold design
- Demonstrate "green" melting technology
- Demonstrate cost savings

Jackson front end plan view (one half)

TOP FIRE BURNER BLOCK HOLE ON

CENTERLINE OF CHANNEL

Jackson forehearth: 1 burner, 1 bushing

Profiling: potential for improved profiling

Transmissivity: reduced vertical thermal gradient

Trial Risks – Oxy Fired Burners

- Higher flame temp: risk of melting block
 - 4 top fired burner blocks destroyed in Guelph
 - 1 fh 7A4: checkvalve, low O2 flow
 - 1 CFM MC Zone2, #4: trial block design
 - 1 (CFM MC Zone 2), high temp. oxidation of s/s burner or off ratio flow of gas& O2
 - 1 CFM MC Zone 2, #5: Feb 18, 04 (cast block material sagging??/gas tube sagging??)
- Degradation of cast (not fired) mullite blocks due to minor melting of burner block bore is a concern in Guelph

Retrofit Side fire burner and block failures

GLASS FLOW

<u>GUELPH 7A CROSS CHANNEL - ZONE 4 - SIDE FIRED OXYGEN BURNERS</u>

<u>CURRENT CONDITION OF BURNER BLOCKS AS OF 4-23-04</u>

Major constraint:

Using geometry of existing burner blocks

LEGEND

- INDICATES CRACKED BLOCK POSSIBLE FUTURE USE BUT NOT DESIRED.
- INDICATES GOOD CONDITION SUITABLE FOR FUTURE USE
- ▲ INDICATES POOR CONDITION NOT SUITABLE FOR FUTURE USE
- → COULD NOT SEE VIEW OBSCURED BY OPPOSITE BURNER OR STEELWORK
- INDICATES BURNER ABANDONED IN PLACE (FUSED TO BLOCK)

Equipment Improvements

- Zone control skid linkage geometry
- Increased size of zone control skid valves
- Increase supply and manifold piping dia.
- Low pressure drop (springless check valve)
- Burner gas tube concentricity (lower gas tube temp)
- Burner material
- Burner block material and internal design

Safety Interlocks:

Minimum temperature for auto ignition

•If oxygen is lost: gas off – per existing safety

skid interlocks

When gas is lost: oxygen for 15 minutes

O2/N2 mix after 15 minutes

Check valves upstream of flex hoses

Consortium activities for Jackson Trial:

CTI/Eclipse: CTI burner in top fired configuration

for comparison of two burner

technologies

BOC: exhaust gas sampling support

O2/N2 mixing station

Osram: monitoring progress for applicability

- Significant Energy Conservation
- Significant Environmental Benefit (less CO2 & NOx)
- Risks: technology still being developed
 - months not years of run time: potential for equipment failure due to high temperature flame (burner & block)
 - Impact on fine fiber process is not known

Questions & comments are welcomed!

Supplemental Slides follow

Melting Energy Reduction

